2030+技术趋势白皮书.pdf

返回 相关 举报
2030+技术趋势白皮书.pdf_第1页
第1页 / 共31页
2030+技术趋势白皮书.pdf_第2页
第2页 / 共31页
2030+技术趋势白皮书.pdf_第3页
第3页 / 共31页
2030+技术趋势白皮书.pdf_第4页
第4页 / 共31页
2030+技术趋势白皮书.pdf_第5页
第5页 / 共31页
亲,该文档总共31页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
2030+技术趋势白皮书 中国移动通信有限公司研究院 2020年11月 - 1 0. 3 2 Z_ CF . 4 2.1 NBaFJ . 4 2.2 0Y 0 . 5 2.3 DOICT= 8 . 7 2.4 55 G . 7 2.5 O.-FJ-A10F . 8 3 47-_ . 9 3.1 63?CW? QMIMO . 10 3.2 7-CM . 11 3.3 Cx(PE_ . 12 3.4 # . 14 3.5 AIP,(*6K.D . 16 3.6 +XK.Df . 17 3.7 8F20 ,QoSf . 18 4 557-_ . 19 4.1 EGFx . 19 4.2 11,=FAA . 20 4.3 O.7- . 23 4.4 *+O,5583+ . 24 4.5 .WPE . 25 4.6 5F0;55 . 27 5 k5. 29 63). 29 1 0 M G2030+6G731e, ),# % =MC73= (/tPC G,+UL+) +U# ,5u 1 *5F6qu6G55 F pp%C p P,*Q?x6G0 e M6?-., M6Gu=73D% 73e,31 41v /p 41. 6Gu=73D% 73e ,/455,e CFN# A5 45% ,Kde 2 Z_ CF -$L-vFPeD=73,$= 55# ,F6!+mP LCM6x,75#AP ,73eC#), B,55 )0A6,(D C 2.1 gg0_ L-vFPM6x,CQ01FP55M6?*P,NBg+g 6GHzA,NBg(5G!s26GHz=39GHz,!2#N!( 5 %?FPn=N!430790THz#Kp380 750nm,+k.# 2 ?4400THzOF?NBgC=,eN!0.110THz#Kp 30 3000m,+k.# 3 ?410THzOF?NBgZ6;G3? ,(C BEFUF,_0= :00c OF,00 U fM1 V5 fM55F, f0?G O?-?j *1?-?j j 0 Oj O #;j1yj E8i D*3 43. 0_ f6L55 M G6G,0_ f6L ,nt:Q+m0 73 1 ?-73 4 FPE0_ f6L55,U fCz$B9 U f 5S%a$n %p+mU.,68*C.55NR Cz$558L4 2.3 2,LP=#EP +UP LPN7373 Bp 73 #EPNEXR,U. $h73 FP,U.=0 W t/p73 +UPN(*L +,U.=0 W=* 3 47-_ M/+ p,=M6x TbpsH4,.a #e 4FP315,0c AAcG3?tCE H, f4 G 5G315G+,OFDM#73CE# L*,!E#L*,! fPN1 3V,.j 73PDtAL 410. #*C BV5# Ap F71 -5,N #Ap F71 - /,-N)=, -P1/ 410v/p FPE/L*, 1 - %Ef60P5*L, 6BOFDM#c,PN1C_ 3Vp60 411. #DOFDM73/ 41150500km/h01)c*5-Uc69CDLF W E#L*L60kHzF5L.7p1/3.7),0%.7E#p 128 #69:*5 D # %?/QFU01)c,PN *N,B% )73 s1-.J0D # QFU011 pA-. V50OFDM,# % Dt- 1718 |E ,-2.C F7 -e #.J0c6H?B4N LAAQ,69 -6K62.9 P_4FM6?F 6!.J0 3.5 AIip!EAhCc 8 5GFPC455,73LFp6H?B4N ) /55Cz$*Q,AIep-$45573 L,q?73e6! $MFEfn5=51= 5,( *1 :xM 19 c(*xAI#=_+ 73/p#)Lp455(* AI (*xq? %+CSI:*_+$c,/5554 FPcQ5*CSI,5_/p6BLCSI O6K6 20 _+/ 555lf, -f -,F 21 (,F)A6 NL :p l p %Fc,M* l6BU-E+AI W 5V5(*x W 73 -. A,SD%e % NAM #w0AU.U. :02 ,B-x e F8, l #w0A/C B02,B. l=8 1%,:* 6 88) )3) 2;6 88) )3) 2;6 *3) 6.? 6.? *3) 6.? 6.? 412. +K4D%l EL*M6?QFUQ,VEFPF Q,V E.+ L*, B,FM6?p, +U AI1#eF/F1%AM 1. L*0.v73 H73Z2 1) 0.v73;Ep473F1*=+mM1*=UE8 731* 2) H73;5C#=GLD=736t= AI 573,Q, QC % 0.vA=C5r= FP.L/55VE,6K6 +Xr JPEr 0+55K.Dr(*6r 7- 7- 4 *6 +XgMfM 416. Dx6 AA B,/+x,VEM6xF$,73LU. U.55C31M6?PAx=P5y=PeN MjePAL % M=73,K1B.PGN B ,+g :Ax,6 AA ,=L# P=44 4 :e =Lc,FMjGN 4.4 RK +Uee=FPEL!(*L+ L+ 016U!)/(*L+)7?=+U55e;730 W=5y0 W=5 50 W=555-U=D73 W =8 L#B=GL= :*= 6B556Ll!C,LNEfL+xFPE -=N#=NL=5-U)55,8 73 417. +U)558 0+Ue 73e6G558 NL55/55(7,C AA0 ?FG5F5$HF 0 Uq 0oZohoa LN d(sh0 FN#/ %73 +U,73LFN75# f /(*1N 5-UPAA /,F5* 8 f/(*W!8 %JF55073/55 73,%JLD%F8 +UK55/C BPM6xFAa N#8 5L G5 :5573+UF%CPM6x,1%f1% C#w/H!V5p,1AM 140 ), W LAPI4FwA+mH44F W L B9+ Efl,-$,A=5ye7 %5L0AQe7+m,lL A75#%JFFp %73 2) 55A %5L0A +k55 55,673HL-v+ pC%JF/55A73,M6xx 0C055A,%JF QC#)NewIP=SRv6=QUIC 1M/A,KU?x1%f1%5=5L*,A 73Ue7 B!=+P8)o+mP2 CH?x/=(1%f1% ,55A?M6FF?F6B) D5G+55 G6G550i= 3) PD% %5L0A 1%f1%55ECCf,PGM6?-Af55L5y FP4,L*e? D,e7?M6G5C B+m+C BP:* F6! f41%=5=n5=5=fc5,E D% %#= %B9=-U!E)1%f1%P,=5=E B )1%f1%,55L 4) 1*1*E B45L0Ae= - 1*E55c,5ye7P0L8 ,1* 5 k5 L-v5G,!FU? WL|+Ze5G (65 -*Pc ,!FU$MFEM G,M6xFP-.,P= +=C=,NG3 OFU A1=p K4= 731eDFPe C= F!=M6?5 F6 L C315,F6G,AA .J0 b,5c 301/6Ge CM,S!S69 D5#c 301 63) 1. G.Y.Liu, Y.H.Huang, N. Li et al., “Vision, Requirements and Network Architecture of 6G Mobile Network Beyond 2030”, China Communications, vol. 17, no. 9, pp. 92-104, 2020. 2. P. Pathak, X. Feng, P. Hu, et al., “Visible light communication, networking, and sensing: a survey, potential and challenges,” IEEE Communications Surveys & Tutorials, 2015, 17(4): 2047-2077. 3. H. Song and T. Nagatsuma, “Present and Future of Terahertz Communications,” IEEE Transactions on Terahertz Science and Technology, vol. 1, no. 1, pp. 256- 263, Sept. 2011. 4. )(g)%FU f= ,3GPP=FD6GQEUD5 5F, 2020. 5. W. Saad, M. Bennis and M. Chen, “A vision of 6G wireless systems: applications, trends, technologies, and open research problems,” in IEEE Network, vol. 34, no. 3, pp. 134-142, May/June 2020. 6. J. Zhang, S. Chen, Y. Lin, et al., “Cell-Free Massive MIMO: A New Next- Generation Paradigm,” in IEEE Access, vol. 7, pp. 99878-99888, 2019. 7. D. Wang, J. Wang, X. You, et al., Spectral Efficiency of Distributed MIMO Systems, in IEEE Journal on Selected Areas in Communications, vol. 31, no. 10, pp. 2112-2127, October 2013. 8. X. Su, Y. Yuan and Q. Wang, Performance Analysis of Rate Splitting in K-User Interference Channel Under Imperfect CSIT: Average Sum Rate, Outage Probability and SER, in IEEE Access, vol. 8, pp. 136930-136946, 2020. 9. N. Li, J. Jin, L. Xia, et al., “Robust Low Complexity Beamforming for Cell-Free Massive MIMO”, to appear in Proc. IEEE VTC2020-Fall, 2020. 10. W. Tang et al., “Wireless Communications with Programmable Metasurface: New Paradigms, Opportunities, and Challenges on Transceiver Design,” in IEEE Wireless Communications, vol. 27, no. 2, pp. 180-187, April 2020. 11. Q. Wu, S. Zhang, B. Zheng, et al., “Intelligent Reflecting Surface Aided Wireless Communications: A Tutorial,” arXiv:2007.02759v1, July 2020. 12. C. Liaskos, S. Nie, A. Tsioliaridou, et al., “A New Wireless Communication Paradigm through Software-Controlled Metasurfaces,” in IEEE Communications Magazine, vol. 56, no. 9, pp. 162-169, Sept. 2018. 13. J. E. Mazo, “Faster-than-Nyquist signaling,” Bell Syst. Tech. J., vol. 54, no. 8, pp. 14511462, 1975. 14. S. Zhao, Q. Wang, J. Jin and G. Liu, “Performance Analysis of Overlapped Time Division Multiplexing Systems Under Correlated Noise,” to appear in Proc. IEEE GLOBECOM Workshop, 2020. 15. Q. Wang, Y. Chang and D. Yang, “Deliberately Designed Asynchronous Transmission Scheme for MIMO Systems,” Signal Processing Letters, vol. 14, no. 12, pp. 920-923, Dec. 2007. 16. D. K. C. So and Y. Lan, “Virtual Receive Antenna for Overloaded MIMO Layered Space-Time System,” in IEEE Transactions on Communications, vol. 60, no. 6, pp. 1610-1620, June 2012. 17. R. Hadani et al., “Orthogonal Time Frequency Space Modulation,” in Proc. IEEE Wireless Communications and Networking Conference (WCNC), San Francisco, CA, pp. 1-6. 2017. 18. K. R. Murali and A. Chockalingam, “On OTFS Modulation for High-Doppler Fading Channels,” in Proc. Information Theory and Applications Workshop (ITA), San Diego, CA, pp. 1-10, 2018. 19. S. Han, T. Xie, C.-L. I, et al., “Artificial-intelligence-enabled air interface for 6g: solutions, challenges, and standardization impacts,” to appear in IEEE Commun. Mag., Oct. 2020. 20. C. Wen, W. Shih, and S. Jin, “Deep learning for massive MIMO CSI feedback,” IEEE Wireless Commun. Lett., vol. 7, no. 5, pp. 748751, Oct. 2018. 21. H. Ye, G. Y. Li, and B. Juang, “Power of deep learning for channel estimation and signal detection in OFDM systems,” IEEE Wireless Commun. Lett., vol. 7, no. 1, pp. 114117, Feb. 2018. 22. T. OShea and J. Hoydis, “An introduction to deep learning for the physical layer,” IEEE Trans. Cog. Commun. Netw., vol. 3, no. 4, pp. 563575, 2017. 23. Y. Zhang , G. Li, C. Xiong, et al., “MoWIE: Toward Systematic, Adaptive Network Information Exposure as an Enabling Technique for Cloud-Based Applications over 5G and Beyond,” SIGCOMM 20: Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication. ACM, 2020.
展开阅读全文
相关资源
相关搜索
资源标签

copyright@ 2017-2022 报告吧 版权所有
经营许可证编号:宁ICP备17002310号 | 增值电信业务经营许可证编号:宁B2-20200018  | 宁公网安备64010602000642