数字孪生城市白皮书.pdf

返回 相关 举报
数字孪生城市白皮书.pdf_第1页
第1页 / 共22页
数字孪生城市白皮书.pdf_第2页
第2页 / 共22页
数字孪生城市白皮书.pdf_第3页
第3页 / 共22页
数字孪生城市白皮书.pdf_第4页
第4页 / 共22页
数字孪生城市白皮书.pdf_第5页
第5页 / 共22页
亲,该文档总共22页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
数字孪生城市白皮书 002 华为技术有限公司 数字孪生城市白皮书 数字孪生城市白皮书 01 目录 CONTENTS 第一章 数字孪生城市的理解 1.1 城市孪生是通向智慧城市的“罗马大道”04 1.2 数字孪生镜像平面是“虚实”镜像的介质 04 1.3 数字孪生城市是知识跨界融合的智慧结晶 05 1.4 数字孪生城市是多维技术融合的综合应用 第二章 数字孪生城市参考框架 2.1 数字孪生城市工程方法 08 2.2 数字孪生城市功能框架 09 2.3 数字孪生城市数据框架 10 2.4 数字孪生城市平台能力 11 2.5 数字孪生城市分级模型12 第三章 华为数字孪生城市典型实践 3.1 打造数字孪生城市全景实验室 13 3.2 打造数字孪生第一城 15 第四章 数字孪生城市未来展望 数字孪生城市白皮书 02 新中国成立70年来,经历了世界历史上规模最大、速度最快的城镇化进程。党的十八大以来,在以习 近平同志为核心的党中央坚强领导下,城市建设和发展步入了新的阶段,城镇化水平进一步提高,城市 发展质量明显改善,城市功能全面提升,为全面建成小康社会搭建了一个坚实的平台。 目前城市的信息化发展还处于局部或单域场景的智能监测阶段,在城市发展成理想形态前,政府、市 民、企业三大主体还存在诸多尚未实现的需求,城市要素的数字化未全域覆盖,基于物联网、大数据、 人工智能、区块链等技术缺乏融合创新,各系统间有机融合的体系架构还在不断演进,城市运行和治 理的水平有量的提升,但少有质的改变。这些问题根因可以归纳为城市不断扩张的规模与有限的资源 分配间的矛盾,而从物理空间到数字空间的突破以全局视野实现精准映射、感知交互、智能监测、模 拟仿真等能力正是此矛盾的破题关键。数字孪生城市建设理念应运而生,为城市治理能力和治体系 现代化提供了新思路。 数字孪生城市是现代化城市治理方式的创新性变革。物理城市中所有的人、地、物、事、情、组织等要 素,借助数字孪生技术在数字世界建设虚拟映像,实现“物理-数字”虚实融合交互,在物理世界不可 能完成的工作,在数字世界则充满了丰富的想象空间。 关于数字孪生城市如何建设,业界还未形成充分共识,华为从项目实践中总结数字孪生城市白 皮书(以下简称 “白皮书”),内容涉及数字孪生城市的内涵与外延、建设方法论、关键技术应用、体 系框架等理论内容,同时结合项目实践提供典型案例的分享,最后对数字孪生城市未来发展进行了 适度展望。“白皮书”意在“抛砖引玉”,贡献我们的一些思考与实践,一方面期望为数字孪生城市的建 设提供有价值的参考;一方面期待携手更多专家和伙伴,共同探索数字孪生城市的未来! 引言 胡芳 华为公司中国区智慧城市总经理 数字孪生城市白皮书 03 我们理解的数字孪生城市 运用数字技术在物理城市与数字城 市之间建立相互映射的关联关系,通过对 物理实体、规则、边界、系统属性的数字化映射, 支持数字城市到物理城市的动态监测与模拟仿 真,实现城市从规划、建设、管理到服务的全过程、 全要素、全方位、全周期的数字化、在线化和智 能化,依此指导优化城市面貌重塑城市现 代化治理模式,促进城市的可持续高 质量发展。 数字孪生 数字孪生是充分利用物理模型、传 感器更新、运行历史等数据,集成多学科、 多物理量、多尺度、多概率的仿真过程,在虚拟 空间中完成映射,从而反映相对应的实体装备的 全生命周期过程。数字孪生是一种超越现实的 概念,可以被视为一个或多个重要的、彼此依 赖的装备系统的数字映射系统。 -百度百科 数字孪生城市 2020年7月大数据战略重点实 验室全国科学技术名词审定委员会研 究基地收集审定的第一批108条大数 据新词,报全国科学技术名词审定委 员会批准,准予向社会发布试用。 -百度百科 第一章 数字孪生城市的理解 数字孪生城市白皮书 04 图1 数字孪生镜像平面 智慧城市是城市发展的一个科技愿景。在城市不断进化的过程中,从数字 化到智能化再到智慧化,数字孪生是通往智慧城市的一个重要技术路径。 数字城市发展阶段以城市数据为核心,核心任务实现城市要素和业务 数字化。经过近十年的数字城市建设,城市运行数据大量汇聚积淀,城 市画像日益清晰,跨层级、跨地域、跨系统、跨部门、跨业务的数据资 源加速有序融合,基于海量多维数据分析的智能应用不断涌现,以“智 能”场景为核心的智能城市已悄然而至。 城市智能应用随着技术创新以及业务融合,已逐渐走入人们日常的生 产生活,但对城市治理如此复杂的问题改进还未有质的提升。城市系统 的复杂特性,迫切需求技术应用实现新突破,支持从物理空间到数字空 间以全局视野实现精准映射、感知交互、智能监测、模拟仿真,具备高纬 宏观视角分析城市系统运行规律的能力。数字孪生城市物理城市与 数字城市虚实融合,以数据驱动业务、业务融合智能,智能服务场景,场 景交互系统,系统虚实管控的新型城市治理模式呼之欲出。 城市全域数字孪生化和全域智能化不可一蹴而就,城市的智能演进 是必不可少的一环。数字孪生更加侧重系统科学的认知,关注城市 局部系统与城市整体系统的科学发展。智能化更加侧重与城市场景 结合,关注场景化应用与人的获得感。两者发挥各自的技术特长共 生互补,相互促进,让城市向更高级的智能转变,从而引领城市高质 量发展,提升政务效率,提振经济运行,创新城市治理,优化公共服 务,促进生态文明,实现城市智慧化的持续发展,建设成为一条通向 智慧城市的罗马大道。 镜子前面是你,镜子后面是一个“数字镜像”的你! 在数字孪生世界中也存在一个虚实镜像的介质,我们将它定义为“数 字孪生镜像平面”(简称孪生平面),平面一侧是物理世界的属性,平 面另一侧是镜像的数字表达。孪生平面自下而上包括:智能设备、联 接网络和数字孪生平台,分别归属于传统IT架构划分的感知层、传 输层和平台层。 随着5G、AI芯片的普及和技术推广,感知终端由原有的“哑终端”逐 步向智能终端演进,更加可通、可管、可控。感知终端以标准的传输 协议将状态数据传送到应用层,支持实现物理城市的感知、互联、监 测与预测。目前,物联感知终端在城市的诸多领域已发挥巨大作用, 主要包括:计量终端(水务、燃气、热力、电力等),环境监测传感器 (大气、水、噪声、辐射、土壤、生态等)。未来,具备多样复合能力的 智能终端,将走进城市,给我们带来更多惊喜,如城市巡检机器人、智 能停车机器人、智能市政终端、智能监控终端等。 联接网络是智能终端的通信基础,不同的物联网场景和设备使用不同 的网络接入技术和连接方式,包括有线和无线方式。有线方式主要应 用在室内和大带宽有线连接业务场景。无线连接分为短距无线和长 距无线,短距无线技术包括蓝牙、Zigbee、WiFi等技术,主要应用在室 内和短距离连接场景,一般是多个无线终端通过网关进行汇聚后连 接到物联网平台。长距无线包括无线专网、运营商蜂窝网络等不同方 式,主要应用在野外和长距离连接场景。多样性的网络接入技术,支 持更加丰富的智能终端,面向场景化应用灵活选择合理的接入方式。 日益复杂的数据处理与多样性的网络接入,需要强大的数字孪生平 台化能力作为支撑。数字孪生平台需具备端到端的IT服务能力,从功 能角度划分,包括:物联网平台化能力、网络虚拟化管控能力、大数据 平台能力、视频汇聚分析能力、融合通信能力、地理信息服务能力、 孪生模型设计与管理能力、人工智能服务能力等。数字孪生平台是孪 生平面的核心,一定程度上决定了物理城市与数字城市间“虚实”连 接的数量以及交互质量。 城市孪生是通向智慧城市的“罗马大道” 数字孪生镜像平面是“虚实”镜像的介质 1.1 1.2 数字孪生镜像平面 平台+网络+智能设备 数字系统 数字空间/世界(赛博空间) 物理空间/世界 虚体外部业务逻辑 实体外部环境关系 数字虚体 (物、人、组织、环境) 数字内部 业务逻辑 影响 转化 物理系统 物理实体 (物、人、组织、环境模型) 物理内部 关系 影响 转化 影响 转化 影响 转化 映射映射映射 已知但无法 定义事物 未知事物 动漫创意 数字孪生城市白皮书 05 图2 数字孪生螺旋式融合演进 数字孪生城市概念的提出是几十年来技术发展的必然结果,我们将几 个维度的相关概念放在一起发现,它是一个螺旋式融合演进的过程。 在工业领域CPS(Cyber-Physical Systems)作为德国工业4.0的关 键技术,经历一段时期应用后遇到发展瓶颈,后与数字孪生相互融 合,推动了智能制造产业的快速发展。 BIM(Building Information Modeling)技术是Autodesk公司在2002年 率先提出,核心是通过建立虚拟的建筑工程三维模型,利用数字化技 术,为这个模型提供完整的、与实际情况一致的建筑工程信息库。随 着城市信息技术需求的进阶,CIM (City Information Modeling)一个新 概念应运而生,目标实现跨部门,跨学科的信息融合,将信息化技术应 用到城市生产生活中,继承并融合了BIM发展理念。 数字孪生城市的理念提出,是继承、融合工业领域的数字孪生、建筑 信息领域的BIM和城市信息领域的CIM,同时融入现代城市学科而 催生的城市科技发展新理念。 数字孪生城市是知识跨界融合的智慧结晶 数字孪生城市是多维技术融合的综合应用 CPS与数字孪生本质来讲都是为了描述信息空间与物理世界融合 的状态,但两个概念的历史渊源和工程意义并不完全相同。CPS主 要是产生于嵌入式系统在工业领域的深度应用,偏向一些科学原 理的验证,而非工程应用的优化,所以,在实际工作中真正采用 CPS概念去指导工程实践的情况,主要限于一些航天军工领域,这 些领域的工程系统复杂性,用传统的工程系统难以描述清楚。为了 寻找一种能够降低复杂工程系统建设费用的方法,数字孪生的价 值得以显现。数字孪生以数据、模型为基础,采用AI和大数据等新 技术能力,广泛应用于工业领域仿真分析、产品定义、制造装配工 艺、测量检验等模型构建等环节,成为了智能制造、工业互联网等 现代化先进制造业中的核心概念。 BIM贯穿从建筑的设计、施工、运行直至终结的建筑全生命周期, 将各种信息始终整合于一个三维模型信息数据库中。借助BIM这 个高度集成的三维模型,极大地提高了建筑工程的信息化程度,为 建筑工程项目涉及的各方人员提供一个工程信息交换和共享的平 台。然而,BIM在提供精确的地理位置、建筑物周边环境整体展示 和空间地理信息分析上存在不足,而三维GIS(地理信息系统)正好 可以对这些不足进行补充,完成建筑物的地理位置定位及周边环境 空间分析,完善大场景的展示,使得信息更完整及全面。通过和GIS 技术进行融合,BIM的应用范围从单一建筑物拓展到建筑群以及道 路、隧道、铁路、港口、水电等工程领域。 BIM整合的是城市建筑物的整体信息,而GIS则整合及管理建筑物 的外部环境信息,它们的融合创建了一个包含城市大量信息的虚拟 城市模型,因而,引出了CIM的概念。 CIM是以城市信息数据为基础,建立起三维城市空间模型和城市 信息的有机综合体。从狭义数据类型上讲,CIM是由大场景的GIS +BIM+IOT数据构成,属于智慧城市建设的基础数据。基于BIM和 GIS技术的融合,CIM将数据颗粒度精确到城市建筑物内部的单个模 块,将静态的传统数字城市增强为可感知的、实时动态的、虚实交互 的智慧城市,为城市综合管理和精细治理提供了重要的数据支撑。 2018年,雄安规划纲要在雄安新区的城市智慧化管理领域上提 出:“坚持数字城市与现实城市同步规划、同步建设,适度超前布局 智能基础设施,打造全球领先的数字城市”、“建立健全大数据资 产管理体系,打造具有深度学习能力、全球领先的数字城市”等建 设内容,数字孪生城市的概念开始在国内受到广泛关注。 1.3 1.4 数字孪生城市不是一项技术,是多维技术融合的综合应用。 数字孪生城市的落地应用离不开New ICT技术的支持,包括5G广连接特性支撑下的物联网虚实互联与集成,基于新型测绘的三维建模技术,基于 大数据、云计算、模拟仿真、虚拟现实(VR)与增强现实(AR)的虚实映射与可视化监测;基于数据挖掘、人工智能、深度学习的城市变化预测等。 融合 融合 融合 基因继承 具象演进 CIM BIM CPS Digtal Twin 数字孪 生城市 数字孪生城市白皮书 06 图3 数字孪生城市技术图谱 实时监测是数字孪生城市运行的基本诉求。 数字孪生城市的本质是城市级信息模型赋能体系,通过建立基于立体感知的数据闭环赋能新体系,利用物联网、大数据、云计 算、视频感知、数字化仿真、AR/VR、区块链等关键技术,以积木式组装拼接,生成城市全域数字虚拟映像空间,实现对物理世界 的实时监测。为了让数字孪生城市能够动态、及时地虚拟出真实世界的运行,就要内置强大的计算能力,边缘计算和云计算能为 数字孪生城市与现实城市平行发展提供算力支撑,保证两者如影随形,相互作用。运用模拟仿真技术,可进行自然现象的仿真、 物理力学规律的仿真、人群活动的仿真、自然灾害的仿真等,为城市规划、管理、应急救援等制定科学决策,促进城市资源公平 和快速调配,支撑建立更加高效智能的城市现代化治理体系。AR/VR不仅是下一代的显示技术,更是数字化进程中最重要的数 据采集以及互动的接口,AR/VR 发展的浪潮冲破了许多原有的藩篱,教育、军事、医疗、文旅、地产等细分领域都已开始引入3D 虚拟场景或应用内容的全新交互体验方式。城市运行态势的多维度、多层次精准监测,是建设数字孪生城市的基本诉求。 全域联接是数字孪生城市建设的重要基础。 有关数据显示,2025年全球连接数量将会超过1000亿。一方面,随着5G、WiFi-6、IOT、RFID等技术的日益普及,体验和业务驱动 联接与计算无处不在;另一方面,随着卫星定位及通信技术的不断发展,以高精度定位和卫星通信的时空联接将在经济社会各领 域得到广泛应用。基于标识的全域联接打通了云、AI、边缘计算、物联网、高精度定位、高清视频等新技术,使行业数据采集、传 送、存储、计算、分析及反馈实现了闭环,实现“端、边、网、云”贯通的自治化分布式体系,成为数字孪生城市建设的重要基础。 三维模型是数字孪生城市可视的主要载体。 随着国家自然资源部对“实景三维中国”、“三维立体自然资源一张图”建设的全面推进,测绘地理信息在经济社会各领域 得到广泛应用。倾斜摄影、无人机、BIM等技术,可实时、准确地获取城市局部的正射、倾斜或 Lidar 点云数据以及单体建筑 工程三维数据,然后依托实景三维重建技术、激光点云三维构建技术和多源数据融合等技术,通过自动化处理流程手段,获 得三维点云、三维模型、真正射影像(TDOM)、数字表面模型(DSM)和建筑信息模型等测绘成果的模型。在数字孪生时代, 测绘地理信息行业从传统的地图产品制作转型为面向城市治理、社会经济、专业建设和大众民生应用的服务行业,数字孪生 城市更加需要新型测绘的强力支撑,在时空大数据管理、地理监测、高精度实体化测绘等方面提出更高要求,基于新型测绘 构建的城市三维模型是数字孪生城市运行的主要载体。 智能预测是数字孪生城市发展的高阶智慧。 数字孪生城市对人工智能领域数据挖掘、深度学习、自我优化技术的应用,可使城市从以往单域智能、被动响应逐步转变 为全域协同治理、智能响应、趋势预判的模式,构建起高效智慧的城市运行规则。深度学习核心应用技术包括计算机视 觉、自然语言处理、生物特征识别、知识图谱等,从已有城市数据中挖掘出新的数据并结构化当前数据,并将数据与数据 联系起来以形成决策的基础模型,经过不断的试错,推动系统不断自优化,实现数字孪生城市内生迭代发展,最终为城市 提供智能预测,呈现数字孪生城市发展的高阶智慧。 深度 学习 仿真 AI PLM AR/VR 大数据 云计算 区块链 5G 远程 控制 自然语 言处理 机器 翻译 空间 语义 倾斜摄 影测量 点云 街景 BIM 3D GIS IOT RFID 标识 高精度 定位 LBS 卫星 通信 数字孪 生城市 监 测 预 测 仿真 - 对物理世界的模拟表达 AR/VR - 可视化表达方式 大数据 - 虚拟世界的数据集合 云计算 - 获取虚拟世界资源 区块链 - 定义虚拟世界生产关系 监测 数据挖掘 - 发现隐藏信息 深度学习 - 发现规律 机器翻译 - 计算机语义转换 自然语言处理 - 人类语义转换 远程控制 - 物理世界到虚拟世界 的交互控制 预测 3DGIS - 三维GIS平台 BIM - 提供城市建筑信息模型 街景 - 提供城市街道空间表达 点云 - 新型三维测绘方式 倾斜摄影测量 - 新型三维测绘方式 空间语义 - 获取空间信息的表达信息 建模 IOT - 实时的泛在连接 RFID - 非接触数据通信 高精度定位 - 米级以下定位技术 LBS - 获取目标实时位置信息 卫星通信 - 通过卫星获取信息 标识 - 物理世界到虚拟世界的对应标识 联接 云端智能,提供更多更快更智慧的算法, 带动创新应用 大带宽、低时延、广连接网络环境,带动 物联网、云计算与人工智能等新技术生态 建模 连接 数字孪生城市白皮书 07 第二章 数字孪生城市参考框架 数字孪生城市多学科交叉融合的特征,是建设智慧城市的“一把双刃剑”,如运用 好将成为智慧城市建设的利器,如过度消耗理念将为城市建设带来灾难,因此需 要建立体系化的方法作为导引,并在实践中不断总结、优化,指导运用。 数字孪生城市白皮书 08 理论上物理世界万事万物皆可数字 孪生,包括人、车、物、环境、城市部 件等,但在一个城市里要把所有物理 实体数字孪生化,成本极高,难度极 大,同时为维护和管理带来极大挑 战,造成社会资源浪费。我们认为, 数字孪生需要以问题作为导向,以价 值作为驱动,“按需孪生”。依此在实 践中思考,提炼总结一套指导数字孪 生建设的方法-“DOS”工程方法:D (discriminate)识别-7个关键要素 识别,O(optimize)优化-3类优化,S (scenarios innovate)场景试错。 数字孪生城市工程方法 图4 数字孪生城市“DOS”工程方法 优化系统结构关系 通过数据分析监测,获得物理主体间动态变化的特征,模拟 判断通过外部干预调整物理主体间的关系,得到解决问题的 可行方法 优化系统资源配置 通过数据分析监测,获得系统资源配置的动态变化特征,模拟 判断通过资源配置的调整,得到解决问题的最优方案 优化系统外部干预条件 通过外部干预条件的数据监测,获得物理系统与外部环境的 作用关系,模拟调整外部干预条件使物理系统状态最优或得 到解决问题的途径 任何创新都有试错过程,试错是一种创新模式。如何优化城 市路口交通红绿灯变化时间,得到最高的通行效率;如何识 别一个高风险生产企业在发生事故时对城市造成的影响;如 何预测城市新产业导入对本地企业的带动作用等诸如此类问 题,在物理世界中缺乏有效的监测和预测手段,数字孪生城市 专题建设可以作为解决此类问题的一个创新试验沙盒,基于 理论的模拟仿真与价值创新让很多由于物理条件限制、依赖 于真实的物理实体而无法验证的解决方案或城市管理理论经 过不断试错、优化而变成可能。 数字孪生城市的价值就是帮助城市找到了一条低成本甚至趋 于零成本的治理创新试错之路。 识别主题 即确定数字孪生需要解决的核心问题(场景) 识别对象 在问题导向下,做场景化细分,在场景中分析涉及的物 理实体对象,将来作为数字孪生的对象主体 识别关系 在物理模型中建立物理主体对象之间的关系,将来作 为数字孪生对象与对象之间的数字规则 识别技术 为获取所需数据所采用的技术实现手段 识别边界 面向待解决的问题,可抽象为一个物理系统,在物理模型 设计中首先设计系统内的核心物理主体与关键关系,非 核心主体可作为系统外部约束建立连接关系,依此定义 数字孪生边界 识别数据 在物理系统内,为获得解决问题所需的数据,主要涉及物 理主体状态数据与主体间关系数据 识别状态 在物理模型与数字模型间,数据涵义表征的物理状态是 否合理,数据表征的物理状态的业务价值 D(discriminate )识别 -7 个关键要素识别 即识别主题、识别对象、识别关系、识别边界、识别技术、识别数据和识别状态 O(optimize)优化 -3 类优化 即优化系统结构关系、优化系统资源配置、优化系统外部干预条件 S( scenarios innovate)场景试错 2.1 识别 物理实体内外部状态的持续跟踪 D(discriminate)7识别 识别主题;识别对象;识别关系;识别边界;识别技术;识别数据;识别状态 优化 物理系统状态的动态模拟及优化 O(optimize)3优化 优化系统结构关系;优化系统资源配置;优化系统外部干预条件 创新 基于理论的模拟仿真与价值创新 S(scenarios innovate)场景试错 数字孪生可以成为一个创新的试验沙盒,让很多由于物理条件限制、依赖于真实的物理实体 而无法验证的城市管理理论与无法执行的操作变成可能 数字孪生城市白皮书 09 数字孪生城市的功能框架是物理系统设计 与IT系统设计的融合。 数字孪生城市功能框架 图5 数字孪生城市功能框架体系 2.2 数字孪生镜像层(孪生平面) 主要包括智能终端、联接网络和数字化平台等IT能力的设计。用合理的技术 手段,获得物理系统的数据状态并进行分析,同时提供有效技术预测的能力。 数字空间模型设计 建立与物理模型映射的数字化表达,主要包括实体孪生、关系孪生和模型 孪生。值得关注的是,物理空间模型到数字空间模型的映射,不一定是可 视的,甚至可能仅仅是一个简单的数据,重点是采用孪生思维,聚焦解决 的问题本质。 物理空间模型设计 数字孪生城市在物理系统设计中,依据“DOS”工程方法,分别设计物理 要素层,主要包括人、物、组织、环境等关键主体要素特征与定义;物理规 则层,主要包括系统中人、物、组织、环境内外部要素间逻辑关系与业务流 程;物理模型层:主要建立涵盖系统主体要素、主体间关系、系统边界及外 部约束的物理模型。 应用仿真层设计 通过数字模型实现对物理系统的模拟/预测,获得解决问题,优化城市的 最优方案。 公共管理 应用仿真层 模型参数调整、趋势状态模拟预览 数字模型层 物理主体要素、关系、边界、约束文字 数字规则层 人、物、组织、环境内外部要素间逻辑关系与流程数字化 数字要素层 人、物、组织、环境要素数字化 数字镜像层(平台、网络、智能终端) 要素与逻辑关系动态变量识别与数字化基础能力(识别、传输、处理、控制) 物理模型层 物理主体要素、关系、边界、约束 物理规则层 人、物、组织、环境内外部要素间逻辑关系与流程 物理要素层 人、物、组织、环境要素,物理主体要素识别 公共服务 模型孪生 数字空间 镜像平面 物理空间 关系孪生 实体孪生 数字孪生城市白皮书 10 图6 数字孪生城市数据体系架构 依据“按需孪生”的核心理念,城市可根据不 同的需求建立基础数据框架体系以及数据更 新频度。通常我们认为,数字孪生城市的基 础数据框架由宏观、中观与微观三层不同颗 粒度数据框架组成。 围绕数字孪生城市数据体系建设和管理全过 程,整合、集成和规范时空基础数据、工程建 设项目数据、公共专题数据和物联网感知数 据等数据资源,由按尺度分级的基础地理信 息数据库向按地理实体分类的无尺度基础时 空数据库转变,实现不同精度、不同层次、不 同时相的地理实体数据集成,形成地上地下 全域空间立体的三级数据框架体系,为数字 孪生城市运行管理提供统一的数据底板。 数字孪生城市数据框架2.3 城市宏观数据框架 城市宏观数据框架包括两部分,一是以卫星遥感数据为主的覆盖城市山 水林田湖草等大颗粒度城市自然资源宏观数据框架;一是利用更先进的机 载、车载、船载、背包式等新型测绘设备,通过无人船、无人机航拍等新型 测绘技术有效覆盖陆地、海洋、空间和地上地下,基于面向地理实体对象的 增量式数据更新,实现海量城市实体地理信息的快速更新和动态调整。 城市微观数据框架 城市微观数据由地理实体最小颗粒度组合的城市物联场景组成,如道路 交通物联、个人物联、建筑物联等场景,将地理实体间或人与地理实体间 的实时属性挂接,包括地理实体语义、地理实体位置、地理实体城市属性、 地理实体关系及地理实体演化过程等属性,实现场景的孪生能力。 城市中观数据框架 由按尺度分级的基础地理信息数据库向按地理实体分类的无尺度基础时 空数据库转变,通过地理实体建库技术,可实现不同精度、不同层次、不同 时相的地理实体数据集成,形成地上地下、室内室外、二维三维、历史现 状一体化的全空间城市信息模型,支撑基础地理和城市专题数据融合。 城市物联场景 BIM+ 三维模型 静态遥感数据 孪生城市数据底座 + 个人物联场景 建筑物联场景 物联场景 微观数据 航空、无人机遥感等技术对城市 特定区域,针对事件或管理专题, 建设数据管理框架,增补卫星遥感数据 精度与更新周期的不足 遥感卫星对城市城区、林地、耕地、矿山、 水域等大颗粒度城市地理宏观数据框架建设 城市宏观数据框 主城区、城市核心区、 建筑物、城市部件等 BIM和三维模型数据 中观数据框架 场景 依赖 数字孪生城市白皮书 11 数字孪生平台的核心架构以云为基础,联 结无处不在的智能终端,以AI为驱动,融 合大数据、物联网、视频、地理信息等多种 ICT技术,以孪生数据服务、生应用服务 和孪生集成服务为城市运行监测和城市仿 真预测预警应用提供相应服务。 数字孪生城市平台能力2.4 数字孪生平台应具备基础服务特性 数字孪生平台是城市大数据汇聚、应用的载体,是数字孪生城市的基础支 撑平台,为相关应用提供丰富的信息服务和开发接口,支撑智慧城市应用 的建设与运行。 数字孪生平台应具备集成服务特性 集成服务特性包括两类,一类是新技术集成及服务能力,数字孪生平台本 身是以云计算、大数据、视频技术、物联网、人工智能、下一代安全等新兴 技术为核心部件,不断整合现有技术的同时,持续纳入新技术,并将新技术 和现有技术做全面的融合,将机构技术驾驭能力封装在平台内,为上层业务 应用提供技术服务能力;一类是孪生应用集成能力,数字孪生平台可与城 市已建成的城市建设、城市管理、城市体检、城市安全、住房、管线、交通、 水务、规划、自然资源、工地管理、绿色建筑、社区管理、医疗卫生、应急指 挥等领域的应用集成,并基于孪生数据服务、孪生业务服务和孪生集成服 务开展城市运营监测和城市仿真预测预警两大类的应用建设与运行。 数字孪生平台应具备专业服务特性 数字孪生平台应具备城市基础地理信息、三维模型和BIM汇聚、清洗、转 换、模型轻量化、模型抽取、多模集成、模型浏览、多场景融合与可视化表 达、支撑各类应用的开放接口等基本功能,提供工程建设项目各阶段模型 汇聚、物联监测和模拟仿真等专业功能。 安全 安全 管理 应用 安全 数据 安全 主机 安全 网络 安全 物联 安全 城市仿真 预测预警 城市应急事件 仿真模拟 城市事件发展态势 模拟与预警 国士空间规划 与经济发展预测 重点企业生产 与环境影响评估 城市运行 监管 城市交通 状态监测 城市危化品 监测管理 国土空间全 生命周期管理 城市地下管线 规划管理 农产品溯源 全流程监管 城市建筑全 生命周期管理 运维 租户级运维 系统级运维 运营 运营支撑服务平台接入与平台 运营支撑服务数字孪生业务 数字孪生镜像平面 孪生数据服务 孪生模 型管理 模型目录 数字孪生模型管理平台 模型开发 模型开放 孪生关 系管理 孪生关系 原子库 孪生流程 原子库 孪生框 架数据 地理空 间框架 BIM 框架 城市要素基础库 (人、物、组织、环境) 数据治理 数据开发 共享交换 孪生应用服务 入口 服务 孪生 使能 基础 服务 孪生容器 公共管理入口 公共服务入口 主体标识 控制使能 模型重构 模型解构 模型重构 模型解构 孪生集成服务 多模集成 消息集成 数据集成 数字孪生平台 New ICT AI ROMA 大数据 IoT 视频 融合通信 GIS 云基础服务 智能终端 联接网络AND IP 5G F5G WiFi6 IoT 图7 数字孪生平台架构 数字孪生城市白皮书 12 图8 数字孪生城市应用能力分级评价模型 建立数字孪生城市应用能力分级评价模型,有助于各参与角色对齐数建设方向与阶段建设成果评估。我们通过研究数字孪生、 人工智能、地理信息等技术路径的发展史,从物理空间与数字空间的数据关系、物理状态监测预测度、数字使能控制物理实体三个维度, 总结归纳设置L0-L4五级评估模型。 数字孪生城市分级模型 L0 L2 L4 L1 L3 建立物理空间的数字空间框架,能够反映物理空间要素的 静止状态,物理空间和数字空间没有动态联系。典型场景如 传统GIS二维空间静态呈现的应用和传统的信息管理系统 物理空间和数字空间建立双向信息互动机制,数字空间既 可以监测物理空间的要素状态,也可实现物理空间的单域 控制、预测和智能化。系统通过物联终端设备动态获取监 测数据并可实现远程控制,单体终端设备加持AI技术并在 端侧有智能分析及自动控制功能,典型场景如基于二维、三 维的精细空间、物体进行判断、交互,如智能闸机、远程无 人机监控、物体AI识别等 物理空间和数字空间建立全域智能双向数据互动机制,实现物理空间全域智能预测和智能监控。系统通过物联终端设备动态获取 数据、实现全域空间的多元数据共享,全域智能预测和智能监控、边缘智能计算节点联动,并与云计算中心互联互动。智能终端集 群智能,能进行自主的全域范围行动和交互,典型场景如L4级无人驾驶,全域红绿灯智能控制、基于三维精准模型变化的全域自 主推理预测和判断 物理空间的变化状态能实时反映在数字空间中,建立了物 理空间到数字空间的单向信息流动机制,数字世界实现对 物理世界的实时监测。系统通过物联终端设备动态获取数 据、实现物理实体的状态监测,典型场景如基于GIS二、三 维空间呈现及实时的物理设施及人员的监测定位 物理空间和数字空间建立跨域智能双向数据互动机制,实 现物理空间区域智能预测和智能监控。系统通过物联终端 设备动态获取数据,跨域元数共享,实现跨域智能监控 联动、边缘智能计算节点联动,并与云计算中心进行互联和 互动。智能终端具有区域活动能力和信息交互能力,典型场 景如L3级无人驾驶,跨域红绿灯智能控制、基于三维精准 模型的区域智能推理预测和判断 2.5 L4 - 信息双向流动,实现监测、全域智能预测、 控制和联动 L3 - 信息双向流动,实现监测、跨域智能预测、 控制和联动 L2 - 信息双向流动,实现监测、单域智能预测 和控制 L1 - 信息单向流动,实现实时监测 L0 - 建立物理空间的数字框架 应用场景 - 基于三维精细空间、物体进行判断、交互,如L4级 无人驾驶,全域红绿灯控制、基于三维精准模型变化的全域自 主推理预测和判断 应用场景 - 基于三维精细空间、物体进行判断、交互,如L3级 无人驾驶,跨域红绿灯控制、基于三维精准模型的区域智能推 理预测和判断 应用场景 - 基于二维、三维的精细空间、物体进行判断、交互, 如智能门禁,智能闸机、物体AI识别 应用场景 - 基于GIS二、三维空间呈现及实时的物理设施及人 员的监测定位 应用场景 - 传统GIS二维空间静态呈现的应用和传统的信息管 理系统 全域 智能 双向 区域 智能 双向 数据 单域 智能 单向 数据 监测 数字 框架 数字孪生城市白皮书 13 2019年3月,Z区大数据实验区管委会与华为公司联合打造基于现实、面向未来的城市全景实验室。将华为数字生态与Z区资源开放相结 合,利用数字孪生、5G、人工智能等新ICT技术,全面数字化标识;利用二维码、GIS、移动互联等技术手段,对中央商务区城市公用设施、 交通设施、园林设施、特种设备等实体城市部件进行唯一数字化身份标识;以大据为基础,打造基于GIS+BIM+IOT+AI打造1:1的数字 孪生体系,为Z区的规划、建设及运营提供决策支撑,搭起面向未来的城市全景实验室。 打造数字孪生城市全景实验室3.1 第三章 华为数字孪生城市典型实践 数字孪生城市白皮书 14 打造数字孪生镜像平面 智能中枢,核心载体 按照Z区城市发展需要和一期项目规划内容,打造城市智能中枢。完成数字孪生底座 建设,包括370平方公里的数字影像,11万平方米BIM精细化楼宇建模等,基于华为 OceanStor海量数据存储的BIM+GIS形成了与物理世界1:1的数字孪生世界,通过GIS数 据+小场景的BIM数据+物联网的有机结合,以城市信息数据为基数,建立起三维城市空 间模型和城市信息的有机综合体建立物理世界与数字世界的映射关系。基于大数据平台、 物联网平台、融合通信平台、视频云平台、人工智能平台和能力开放平台,实现大数据资源、 物联网资源、融合调度资源、视频资源、地理信息资源的统筹管理,针对城市管理、企业及 市民服务提供基础的应用算法支撑能力,城市智能中枢各专项能力通过能力开放平台对外 开放,大数据企业、应用开发企业等,都可以通过标准化接口调数字孪生平台各项能力 直接验证、开发、测试、上线业务应用,大大节省基础资源的投入。 智 能 终 端,城 市之“眼” Z区通过无人机、无人售货车、AR眼镜、智能巡检机器人、高空瞭望监控摄像头,智能交通 高清视频监控摄像头等智能终端建设城市之“眼”,快速发现关于人、地、物、事、组织的多 维度信息和城市问题,实时监测城市状态。 典型场景:通过采集区域内及周边28个路口136路AI视频数据,基于AI集群进行区域协 同分析,快速完成路口红绿灯的配时策略,通行效率有效提升15%。 5G“ 新 联 接 ”,创 新 风 向 标 基于5G基础网络,Z区建设了Z区5G智能公交(载人)、5G无人售货车(载物)、高点 5G网络高清监控图像回传、5G AR眼镜人脸身份识别、5G无人机无人船自主巡逻、5G地 面机器人智能巡检,极大提高了Z区无人值守的城市服务水平。 典型场景:天、地、空立体化安防。包含四个应用,高空智能巡航、地面机器人智能巡检、高 清视频回传、AR智能眼镜四个5G示范应用。无人机负责高空巡航、高清视频回传负责城 市高点、地面机器人负责路面巡检AR眼镜负责重点安保区域,四类场景构建立体化防 体系,将高清视频回传给智能管理中心。智能管理中心对高清影像进行智能分析,识别敏感 人群、城市敏感事件、违章违法事件并自动预警。 按需“孪生”,逐步激活城市动能 根据Z区所处发展阶段,着力建设智慧招商、智慧政务、智慧交通、 智慧楼宇、协同办公等14个业务应用系统。各系统获取的环境状态 信息、业务信息、数据等汇总到智慧大脑即能管理中心统一汇总、 分析和处理。充分发挥物联网信息感知和大数据价值挖掘作用,开 展运行仿真与分析评估。在整合运行各项数据的基础上,进行大数 据分析,编制全面、动态的运行报表,对可能发生的灾情、突发事件 进行预警,实时监控城市运行状况,为分析城市问题提供决策支持。 智能管理中心包含概况专题、Z区交通服务专题、Z区政务服务专 题、Z区招商引资专题、Z区产业监测专题、Z区数字孪生城市专 题、Z区5G创新专题。专题信息以数字沙盘为基础,进行数据可视 化演绎,让参观者可以直观了解Z区实时数据的动态情况,为观众 展现一个“智慧化”、“活起来”的Z区。 数字孪生城市白皮书 15 图9 数字孪生城市全景实验室 图10 数字孪生第一城整体框架图 打造数字孪生第一城3.2 2020年6月,J区联合华为发布 “孪生计划”,共同推进全国数字孪生第一城的建设,通过“虚实对应、相互映射、协同交互、推演进化”, 实现感知新区,发展新区,让城市更加智慧,让政府决策更加科学,让企业更快更好发展,让百姓更有幸福感和获得感。 数字孪生城市 数字孪生城市 智能中枢 智能联接 智能交互 协同交互 智能推演 虚实对应 精准映射 新 区 智 能 体 物理城市 新区 中央 商务区 研创园 城市孪生(CIM) 交通 教育 能源 城市 生命线 公共 安全 水务 综合 执法 环保 生命 健康 城市数据湖(Data) 城市智能(AI) 制造园 新材料园 生物 医药谷 枢纽办 数字孪生城市白皮
展开阅读全文
相关资源
相关搜索
资源标签

copyright@ 2017-2022 报告吧 版权所有
经营许可证编号:宁ICP备17002310号 | 增值电信业务经营许可证编号:宁B2-20200018  | 宁公网安备64010602000642