中国电动汽车与电网协同的路线图与政策建议.pdf

返回 相关 举报
中国电动汽车与电网协同的路线图与政策建议.pdf_第1页
第1页 / 共92页
中国电动汽车与电网协同的路线图与政策建议.pdf_第2页
第2页 / 共92页
中国电动汽车与电网协同的路线图与政策建议.pdf_第3页
第3页 / 共92页
中国电动汽车与电网协同的路线图与政策建议.pdf_第4页
第4页 / 共92页
中国电动汽车与电网协同的路线图与政策建议.pdf_第5页
第5页 / 共92页
亲,该文档总共92页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
中国电动汽车与电网协同的路线图与政策建议 1 WRI 薛露露 刘坚 王颖 刘小诗 熊英 ACTION PLANS AND POLICY RECOMMENDATIONS ON VEHICLE GRID INTEGRATION IN CHINA HOW DO ELECTRIC VEHICLES FRIENDLY INTERACT WITH THE ELECTRIC GRID 中国电动汽车与电网协 同的路线图与政策建议 新能源汽车如何更友好地接入电网 2 Action Plans and Policy Recommendations on Vehicle Grid Integration in China 校对:谢亮 设计与排版:张烨 新能源汽车如何更友好地接入电网系列 旨在探讨中国新能源汽车与能源(电网)融 合发展的必要性与路线图。该研究系列由两 篇报告组成。中国电动汽车与电网协同的 路线图与政策建议为系列二。 中国电动汽车与电网协同的路线图与政策建议 I 目录 VII 执行摘要 XV Executive Summary 1 第 1 章 背景 1 电动汽车推广及无序充电对电网的影响日益突出 1 电动汽车为可再生能源发电提供灵活调节的资源 5 第 2 章 电动汽车与电网协同的定义和类型 5 电动汽车的可调度性 7 电动汽车与电网协同的方式 9 电动汽车与电网协同的应用场景 15 第 3 章 国内外电动汽车与电网协同相关实践 15 国际电动汽车与电网协同试点概览 19 加利福尼亚州电动汽车与电网协同路线图 20 中国电动汽车与电网协同实践案例 23 第 4 章 中国电动汽车与电网协同的可行性分析 25 经济可行性分析 34 政策保障缺口分析 42 技术标准可行性分析 49 用户接受度分析 51 第 5 章 未来车网协同路线图与相关建议 56 关于推广有序充电的建议 58 关于推广 V2G 试点的建议 61 附录一 内部收益率和投资回收期计算 62 附录二 车网协同所涉及的软件、硬件升级与改造 63 参考文献 65 注释 II Action Plans and Policy Recommendations on Vehicle Grid Integration in China 图 1 北京私家车日平均停车、行驶和充电时间分布 . 6 图 2 北京电动私家车一天不同时段里平均停车时长、充电时长对比 . 6 图 3 北京电动私家车一天不同时段里停车数量、充电数量占电动汽车总量的比例 . 6 图 4 电动汽车与电网协同的范围界定 . 8 图 5 车网协同的不同应用场景:用户侧、输配电侧与电源侧效益 . 9 图 6 全球 V2G项目分布 . 15 图 7 电动汽车与电网协同的目标 . 16 图 8 国际车网协同试点采用直流充电、交流充电与二者兼顾的数量占比 . 18 图 9 车网协同各保障机制间的关系 . 24 图 10 车网协同项目的收支构成 . 25 图 11 V2X在车端、桩端、网端的成本构成 . 26 图 12 日产汽车 Vehicle to Home (V2H)系统 . 30 图 13 2020年、 2030年各应用场景有序充电和V2X经济性对比 . 33 图 14 电池折旧成本和 V2X电损对削峰填谷经济性的影响 . 33 图 15 典型城市一般工商业与居民峰谷电价比 . 36 图 16 实现电动汽车与电网协同所需的通信协议、硬件设备与软件系统升级 . 42 图 17 车网协同所需车侧、桩侧、网侧信息 . 42 图 18 支持 V2X所需的车辆及充电桩的硬件设备改造 . 43 图 19 以充电运营商为主的有序充电优化控制方式 . 44 图 20 以配电网运营商为主的有序充电优化控制方式 . 45 图 21 不同车型一天内出行时间对比及对 V2X潜在接受程度差异 . 49 图 22 中国电动汽车与电网协同路线图 . 52 图目录 中国电动汽车与电网协同的路线图与政策建议 III 表目录 表 1 电动汽车作为储能设施与作为出行工具所提供调节电量比较 . 5 表 2 基于实现机制的电动汽车与电网协同方式分类 . 7 表 3 火电厂与电动汽车提供调频、调峰和爬坡服务的性能对比 . 11 表 4 国际车网协同主要的应用场景与协同方式 . 16 表 5 国际知名电动汽车与电网协同试点项目概览 . 17 表 6 国际车网协同试点常见阻碍 . 18 表 7 国内典型电动汽车与电网协同试点项目概览 . 20 表 8 中国与国际在车网协同的制度与技术进展上的差异对比 . 23 表 9 不同应用场景下车网协同的收益构成 . 26 表 10 住宅小区:削峰填谷成本收益影响因素( 2020年) . 27 表 11 住宅小区削峰填谷:有序充电和 V2B的经济性对比 . 28 表 12 基于有序充电和 V2B的分布式光伏互动经济性对比 . 29 表 13 V2G方式提供调频服务的经济性分析 . 31 表 14 电动汽车通过有序充电和 V2X方式参与需求响应的经济性对比 . 32 表 15 中国车网协同政策保障机制的缺口 . 34 表 16 中国 36个中心城市居民和工商业峰谷电价执行情况与电价信号传导程度 . 35 表 17 美国圣地亚哥天然气和电力公司( SDG the economic returns of frequency regulation will exceed that of time-shifting by 2030. Demand responses provide the third highest values. In recent years, the economic returns of managed charging are considerable, whereas V2G will not be commercially viable until 2030 when the costs of V2G-capable investments (on vehicles, charging points, and grid systems) and the costs of batteries begin to drop. However, PEVs in China can barely capitalize on VGI values provided by time-shifting or the revenues generated through electricity trading and third-party services, because of the regulatory and technical barriers of electricity market access. First, lack of Time-of-Use (TOU) utility tariffs, the barriers on interconnection and access to electricity markets for distributed resources like PEVs are the main regulatory barriers to implement VGI. Although TOU tariffs can offer an effective approach to manage private PEVs charging loads, they are often absent: cities like Beijing do not opt for residential TOU rates, and commercial tariffs are often fixed rates determined by facility owners. Furthermore, the prevailing interconnection, market access regulations, and equal allocation dispatching mechanisms are designed for large power plants and centralized stationary storages; distributed, behind-the-meter resources like PEVs face considerable entry barriers on electricity trading and third-party services. However, as China launches the electricity market reformspiloting spot electricity markets in eight regions, these entry barriers will be removed and the economic values of VGI will be unleashed. Second, technically, communication standards, VGI-capable hardware, and smart battery management system are necessary preconditions to enable VGI. Chinas national standard on vehicles and charging points (EVSE) communication protocol (GB/T 27930) does not support managed charging or bi-directional charging. Furthermore, the communication protocols among EVSE, charge point operators (CPO), and distribution system operators (DSO) are widely absent. Apart from communication protocols, PEV, charging points, and distribution systems also face hardware upgrade to enable load management and bidirectional electric flows. Although specific hardware upgrades are often dependent on communication protocols, some basic upgrades are always necessary, like telemetry and bi-directional meters. Last but not the least, battery degradation is major hurdle to the public acceptance of V2G. Battery degradation tests and the design of smart battery management systems should be carried out under various VGI cycles to avoid the impacts. For VGI to thrive in China, the above regulatory, economic and technical barriers should be overcome by creating synergies among different actors. There are plenty opportunities for growth in VGI amid increasing renewable energy integration, and China can take phased approach to adopt VGI measures on scales. From now to 2025, China is ready for a com- mercial rollout of managed charging. Man- aged charging is an evitable solution to over- come the prevailing charging infrastructure bottlenecks and provide DSO services, while providing demand-side responses, ancillary peak services, and intra-day balancing ser- vices to fill load valleys and match evenings wind spikes. From 2025 onwards, V2G for frequency regulation and other wholesale market services will be feasible with the adoption of V2G-capable technologies and less-regulated electricity market. While private EVs provide largest capacities and energies, public accep- tance is a major roadblock for the widespread rollout for V2G. Therefore, small-scale V2G pilots using public and commercial fleets such as government fleets, school buses, urban freight fleets to support renewable integration will be feasible. XVIII Action Plans and Policy Recommendations on Vehicle Grid Integration in China VGI Applications Time-shifting, distribution upgrade deferral Distributed solar PV charging Demand Response Peak ancillary market (valley filling) AGC frequency regulation Intra-day balance Frequency regulation Ramp ancillary services Spinning, non-spinning reserve Transmission upgrade deferral Tari and electricity market barriers Lack TOU rates or other economic incentives - - Market entry barriers with frequency market No spot market Frequency regulation is mandatory Ramping service is absent No spot market Market entry barriers with reserve markets Interconnection barriers - - - No interconnection rules No interconnection rules No interconnection rules Technical standard barriers No barrier for non-controlled managed charging - No barrier for non-automatic demand response Charging standard doesnt support V2X Charging standard doesnt support V2X Charging standard doesnt support V2X Charging standard dont support managed charging Charging standard dont support managed charging Impacts on batteries - - - Could accelerate degradation Could accelerate degradation Could accelerate degradation Figure ES-3 | Roadmap and action plans of VGI in China Source: the forecasts of EVs storage capacity and renewable generation ratio are from Energy Research Institute of NDRC (2017) Note: red ( ) represents recent, orange ( ) represents 2025 or so, blank represents not suitable for VGI. 600 500 400 300 200 100 0 EV storage capacity(GW) Has obstacles EV storage energy(GWh) 20252020 70 200 250 1,200 730 5,500 2030 Present-2025 MANAGED CHARGING ON SCALE V2G PILOTS 2025 Onwards 中国电动汽车与电网协同的路线图与政策建议 XIX To achieve the above-planned roadmap, the following actions are needed to provide essential regulatory and technical safeguards in order to unlock VGIs market potentials and public acceptance. Concrete recommendations include (Table ES-1): For Managed Charging, the recommendations include: Design EV-only TOU tariff for residential char- gers and increase the differences between the peak and valley tariffs. Subsidize the procurement and installation of managed charging facilities; include managed charging facilities in the public procurement requirement; allow charging service operators to access bulk energy market, inter-day mar- ket, and peak ancillary market to create more diverse revenue sources. Encourage property owners to collaborate with different aggregators to pilot managed charging. Amend GB/T27930 to support direct current (DC) managed charging and encourage the upgrade of alternate-current (AC) chargers to DC chargers to allow for DC managed charging; encourage using cellphone APPs or connecting to national new energy vehicle monitoring plat- form to gather necessary vehicle information to allow for AC managed charging. Hire third-party to certify new energy vehicles to increase EVs compliance to the existing charging standard and remove the charging protective mode to allow for managed charging at the vehicle manufacturing stage. Encourage DSO operators to provide non- sensitive load information to enable managed charging conducted by different aggregators. For V2G, the recommendations include: Establish a national research fund and pilot program to encourage V2G pilots that test new business models and technology configurations; increase the technical exploration in travel and charging behaviour analysis and prediction, VGI-capable software development, and renew- able generation prediction. Make stepwise relaxation for EVs to participate wholesale market. Position EVs as a type of distributed energy resource and design interconnection rules for EVs. Amend the charging standard to enable bidirec- tional DC charging. Run battery degradation tests in VGI cycles and develop battery management systems to prevent battery degradation. XX Action Plans and Policy Recommendations on Vehicle Grid Integration in China BARRIERS RECOMMENDATIONS PRIORITY MANAGED CHARGING Regulations TOU rates: Many cities and provinces do not have TOU rates. Some facility own- ers often mandate fixed rates. Local Development and Reform Commissions: EV-only TOU tariff Managed charging subsidies Public procurement requirement on managed charging Allow for access to the wholesale market High Technical aspects Charging standards: Current charging standard only support DC managed charging, not AC managed charging. Lack of charging standard among charge points, CPO, and DSO. Local Construction Bureau and Development and Reform Com- missions: Encourage property owners to collaborate with different ag- gregators to pilot managed charging High China Electricity Council, OEMs: Amend GB/T27930 to support direct current (DC) managed charging Hire third-party to certify new energy vehicles to increase EVs compliance to the existing charging standard High Local Construction Bureaus and Development and Reform Com- missions: Encourage the upgrade of AC chargers to DC chargers to allow for managed DC charging Medium Development and Reform Commissions or grid operators: Encourage the sharing of the non-sensitive load information to enable managed charging conducted by different aggregators Medium Aggregators: Encourage using cellphone APPs or connecting to national new energy vehicle monitoring platform to gather necessary vehicle information to allow for AC managed charging. Low Table ES-2 | Barriers and Recommendations of realizing VGI in China 中国电动汽车与电网协同的路线图与政策建议 XXI BARRIERS RECOMMENDATIONS PRIORITY V2G Regulations Wholesale market entry barriers: Market access regulations and equal allocation dispatching mechanisms are designed for power plants and centralized stationary storages; distributed, behind-the-meter resources like PEVs face considerable entry barriers for electricity trading and third-party services. National Development and Reform Commission and National Energy Administration: Make stepwise relaxation for EVs to participate wholesale market. Low Interconnection barriers: EVs are not acknowledged as dis- tributed energy, and lack intercon- nection rules. National Development and Reform Commission and National Energy Administration: Define EVs as a type of distributed energy resources Design interconnection rules for EVs. Low Technical aspects Charging standards: Current charging standard doesnt support V2X. Lack of charging standard among charge points, CPO, and DSO. National Development and Reform Commission and National Energy Administration: Establish a national research fund or pilot program to support V2G pilots that test new business models and technology configurations Medium China Electricity Council Amend the charging standard to enable bidirectional DC charging, test the supportiveness of the charging standards to frequency regulation. Medium Battery Degradation: V2X may accelerate battery degra- dation Research Institutes and OEMs: Run battery degradation tests in VGI cycles, optimize battery management systems Medium Table ES-2 | Barriers and Recommendations of realizing VGI in China XXII Action Plans and Policy Recommendations on Vehicle Grid Integration in China 中国电动汽车与电网协同的路线图与政策建议 1 背景 第一章 1.1 电动汽车推广及无序充电 对电网的影响日益突出 新能源汽车的推广对减缓气候变化、降低移动 源的空气污染具有重要意义。中国作为全球新能源汽 车最大的市场,增长势头强劲。截至2019年年底, 中国的新能源汽车总保有量约为381万辆(公安部 2020)。根据新能源汽车产业发展规划(2021 2035年)(征求意见稿)设定的目标,中国新能源 汽车新车销量占比将从 2019年的 4.7%上升至 2025年 的25%左右(工业和信息化部等 2019 )。 中国未来电动汽车规模化的快速增长,将带来车 用用电量与用电负荷的增长,成为未来用电增长的重 要助推力之一:以2050年新能源汽车保有量2.4亿辆 (含乘用车和商用车)为基数进行预测,新能源汽车 的年用电量将达4,922 亿千瓦时, 相当于2018年中国 全社会用电量的7.2%。这对未来发电侧、输配电侧 以及充电桩等的规划布局将产生深远影响。 电动汽车目前无序的充电的方式即随时、随地 与随机的充电,容易导致大量电动汽车在电网负荷高峰 时段集中充电,进而增加电网负荷峰值,对发电、输配 电的容量提出更高要求。根据世界资源研究所( 2019) 和国网能源研究院(2018)预测,在汽车高比例电动化 和快充普及的情境下,电动汽车无序充电将导致2030 年和2035年电网峰值负荷可能增加12% 13.1%。 电动汽车充电不仅会增加电网负荷,也会影响 本地配电网的安全运行。随着新能源汽车的推广,居 住区、直流快充的商业楼宇的配电变压器(以下简称 “配变”)将存在迫切的扩容需求。例如,根据世界资 源研究所(2019)测算,在局部配电网中,私家电动 汽车无序充电会显著增加配电变压器负荷峰值,特别 是当车辆电动化比例达到50% 时,多数住宅小区配变 都面临超载风险。根据国家电网的研究(国家电网市 场营销部 2013),假设车辆电动化比例在2030年达到 30%,配电变压器最大负荷将提升至79.6%,直流快充 对商业楼宇的配变影响最大。在北京,预计未来300万 辆电动汽车的充电负荷不仅将导致本地配变超载,甚 至也将对主干网产生压力。城市电网的增容既面临投 资成本高的问题,进而可能影响全社会电价,也受制 于城市用地空间的约束。如何能既合理满足新能源汽 车推广带来的电网改造投资需求,又控制这些投资对 电价、电网企业的影响,成为亟待解决的问题。 1.2 电动汽车为可再生能源发 电提供灵活调节的资源 在新能源高速发展的同时,中国已进入了可再 生能源的发展“快车道”,光伏发电装机容量更是 位居世界前列。截至2019年年底,我国可再生能源 发电装机容量达到7.94亿千瓦,其中,波动性可再 生能源风电和光伏的装机容量分别为2.1亿千瓦 和 2.04亿千瓦。可再生能源发电(含水电、风电、 光伏、生物质)装机容量约占全部电力装机容量的 39.5%,可再生能源发电量占全部发电量的比重为 27.9%(国家能源局2020)。根据国家发展和改革 2 Action Plans and Policy Recommendations on Vehicle Grid Integration in China 委员会能源研究所预测(2017),在既定政策情景下, 2030年中国可再生能源发电量占比可能会从2019年年底的 27.9%上升至51%。 风电、光伏等可再生能源发电具有随机性和波动性,随 着可再生能源在发电结构中的比重大幅提升,电力系统供需 平衡将面临巨大挑战。这意味着发电侧对灵活电源(如天然 气调峰电厂、储能设施)的需求,以及需求侧对可调节负荷 资源(如供热电锅炉、建筑空调)等的需求都将不断增加。 如果不对电动汽车目前的无序充电方式加以引导,会 使电力负荷特性更加复杂,加剧电网负荷的峰谷差,并对 可再生能源消纳产生挑战(国网能源研究院 2018,国家发 展和改革委员会能源研究所 2017)。例如,电动汽车无序 充电与光伏出力在时间上的错位电动汽车夜间充电、 光伏白天出力,会影响“弃光”问题的解决。 但值得注意的是,与常规负荷不同,电动汽车既可作 为灵活电源,也可作为可调节负荷,不仅可以降低其充电 对电网的负面影响,还在可再生能源高比例渗透下为电力 平衡发挥积极作用。一方面,电动汽车的充电
展开阅读全文
相关资源
相关搜索
资源标签

copyright@ 2017-2022 报告吧 版权所有
经营许可证编号:宁ICP备17002310号 | 增值电信业务经营许可证编号:宁B2-20200018  | 宁公网安备64010602000642