资源描述
百度大脑领导力白皮书洞察AI趋势 激发产业新效能230405081528363839IDC 观点把握趋势2019年AI市场展望辨识路径从技术到应用激发潜能让AI应用发挥效能直面挑战共建AI生态行动计划规划100天AI部署计划结语AI带来万亿美金新机会关于百度AI产业研究中心内容目录4IDC 观点null 把握市场趋势为制定AI战略提供参考。 技术走向方面,机器学习平台、多模态计算、多模型数据库将开始走向市场。落地实施方面,AI部署过程将更加自动化,AI也将从主要在数据中心进行计算扩展至边缘计算。应用价值方面,业务流程自动化、人机交互智能化将是优先受益领域。市场生态方面则体现出两大明显趋势:软件及应用引领基础计算架构、生态资源整合制胜。null 辨识从技术到应用的路径驱动AI落地。 机器学习、深度学习作为最基础最关键的核心技术,驱动图像、视频、语音、语义、知识图谱等技术的应用,未来还将向融合语音、语义、视频图像等多模态计算发展。而从技术到应用,IDC在本次研究中也追踪了16个行业的应用场景。要将这些应用在企业中落地并发挥效能,需要行业参与者共同解决数据资源、硬件适配、云端协同、工程化等诸多环节的要求。null 评估AI应用效能促进商业模式重构。 全面分析所有AI应用场景可以看到:人工智能对企业的影响深远,从产品服务侧,到中间的生产模式、运营模式,再到决策端,人工智能将从降低人力成本、缩短流程所需时间、降低风险损失、带来增值收入、提高生产效率等方面发挥效能。人工智能在不同行业不同企业发挥的效能并不均衡,本着“早投资早评估早受益”的原则,AI系统的早期投资者基本可在6-24个月内收回投资成本,甚至获得更多投资回报。null 共建合作伙伴网络帮助各方轻松拓展业务。 人工智能生态系统正在经历高度集中-各自为政-各司其职的演化进程。为充分发挥应用效能,行业参与者不应止步于单纯的采用这些技术,而应积极构建和启用有助于促进各方合作的平台与服务,从而提升整个生态系统的效率。null 百度大脑:简单易用、全面开放。 百度大脑经过两年多的开放和迭代,目前已经升级到3.0版本,开放超140项AI能力。百度大脑始终致力于为用户提供最丰富最开放、简单易用的AI能力。null 最后,AI行动计划可以分为六步走: 1-10天制定AI行动计划;11-20天选择合适的启动场景;21-40天成立项目小组,准备数据并落实预算;41-60天开始测试AI系统;61-80天正式开始部署AI系统;81-100天复制成功实践,扩大部署规模。5过去两年间,人工智能在中国的发展速度可谓一日千里、遍地开花:从企业单个业务场景试用到复制推广到更多部门,从先行者的小范围探索到行业企业全面入局,从语音控制、人脸识别、OCR等单点应用到将机器学习应用在各种细分领域。先行者正在将成功的人工智能系统实践复制到更多领域,技术与应用双重创新驱动中国人工智能市场高速发展。展望2019年以及其后的3年,预计人工智能市场将再续辉煌,新技术的渗透率将进一步提高,将从智能流程自动化、人机交互智能化等方面变革性地提升人类生活与工作效率。与此同时,市场生态也将更加高度整合。把握趋势 2019年AI市场展望技术走向机器学习深度学习开始走进传统企业 业务流程智能化自动化水平达到新高度低代码开发平台降低AI技术使用门槛软件及应用引领基础架构人工智能从云端部署向边缘计算扩展生态资源整合成为制胜关键融合视觉语音语义等多模态计算开始落地人机交互趋向全面智能化落地实施 应用价值 市场生态多模型数据库开始走向市场六大行业全面采用AI01020304090605100708图1 2019年中国人工智能市场展望来源: IDC, 20186展望一:机器学习/深度学习开始走进传统企业。 机器学习/深度学习将走进企业内部,为企业提供以决策为中心的服务。同时,深度学习也将继续广泛应用在图像、音频、文本等非结构化数据处理中。尤其是传统行业中的大中型企业,采用机器学习平台开发人工智能应用将逐渐成为主流。IDC预计到2020年行业前15%的企业都将采用机器学习。展望二:融合视觉、语音、语义等多模态计算开始落地。 仅能够看清听清的机器智能已经不能满足人类需求,融合视觉、语音、语义及情感的多模态计算成为实现真正智能的迫切刚需。预计未来三年多模态计算将在实际应用中开始落地。展望三:多模型数据库开始走向市场。 随着物联网的投资以及企业数字化转型的进程,企业内各种非结构化数据高速增长,使得能够支持多种格式数据管理的多模型数据库成为迫切需求。IDC预计到2023年,多模型数据库的支出将达到NoSQL数据库支出的30%。展望四:低代码量开发平台降低AI技术使用门槛。 低代码量/无代码开发平台促进AI部署自动化,降低技术使用门槛,使中小企业也能平等使用AI,实现普惠AI。用户可以上传图片、音频、文本等原始数据,系统即可自动训练出合适的模型。典型的案例谷歌AutoML,百度EasyDL。展望五:人工智能从云端部署向边缘计算扩展。 基础架构开始向靠近数据源的边缘位置以及端侧设备转移,而人工智能将成为最先受益于边缘计算的应用程序。边缘设备将包含AI算法并将驱动计算能力的交付。IDC预计至2022年,25%的物联网端设备都将运行AI算法模型。展望六:业务流程智能化、自动化水平达到新高度。 机器学习驱动的人工智能将推动新一轮的业务流程重构的浪潮,众多应用程序将被高度简化。典型的案例如财务流程自动化、核保自动化等众多流程自动化水平将达到新高度。IDC预计至2023年,人工智能将取代50%的IT业务工作量,节省20%以上的运营成本。展望七:人机交互界面趋向智能化。 一方面语音赋能的程序越来越广泛-语音对话能力将嵌入到硬件以及应用程序软件中。另一方面融合语音、图像、视频以及语义理解能力的AI将成为人类与应用程序交互的主流方式。IDC预计到2023年,支持AI 的人机交互接口将取代目前50%的基于屏幕的B2B和B2C的应用程序。展望八:六大行业全面采用AI。 政府行业、金融业、互联网行业在经过近年的应用实践后将全面扩展AI的应用。而新零售、新制造、医疗领域也将成为AI市场的新增长点。IDC预计未来这六大行业应用AI的3年复合增长率将超过30%。展望九:软件及应用引领基础架构。 软件定义计算已成为芯片厂商的重要战略之一。软件及应用驱动AI专用芯片的阶段也将到来。未来,机器学习应用的普及程度、机器学习是否始终需要大量的数据集、深度学习神经网络的演化,都会影响加速计算类硬件的发展路线。机器学习技术演进、AI应用趋势对基础架构供应商日益重要。展望十:生态资源整合成为制胜关键。 人工智能技术正在向端侧智能渗透,成功的应用离不开硬软件的高度适配,这使得技术型厂商与传感器、摄像头、模组等细分产业的整合愈加重要。能够整合解决方案中的各种生态要素并构建合作伙伴网络平台成为制胜关键。技术走向落地实施受益领域市场生态7在未来1-3年内,人工智能应用将渗入到企业的各项应用程序和业务场景,势必将为组织的人力结构、业务流程甚至所在的产业结构带来变革。IDC预计到2022年,中国人工智能市场规模将达到98.4亿美金。智能化升级是大势所趋,如何建立充分的认知和预期,如何利用AI为企业带来经济效能,如何做好战略部署和行动计划,企业在未来一年内均需将这些问题优先纳入战略议程。20170400080001000500090002000600010000300070001118.29840.32019 20222018 20212020图2 中国人工智能市场规模预测,2017-2022(百万美元)来源: IDC, 20188辨识路径 从技术到应用把握人工智能发展趋势,了解人工智能从技术到应用的落地路径,是制定人工智能战略的基础。IDC将真正具备学习能力的系统称之为人工智能系统。系统通过自然语言、语音、图像、视频等方式与人类交互,从交互信息中抽取知识建立知识库,并采用机器学习方式建立预测模型,基于模型进行推理给出结果。机器学习是系统实现智能化的最关键、最基础技术,支持系统实现智能化、自然交互。9AI系统基础技术:机器学习机器学习作为实现智能化的关键技术,在工业界具体落地过程中,又可以分为传统的机器学习和深度学习。传统机器学习算法按照解决问题的类型可分为聚类算法、分类算法和回归算法三大类,聚类是一个无监督学习的过程,没有给出分类,通过相似度得到分类。分类是一个有监督的学习过程,目标数据库中有哪些类别是已知的,分类过程需要做的就是把每一条记录归到对应的类别之中。回归是一个有监督学习过程,量化因变量受自变量影响的大小,建立线性回归方程或者非线性回归方程,从而达到对因变量的预测或者解释作用。深度学习:按照拓扑结构进行分类,可以分为卷积神经网络CNN、循环神经网络RNN、对抗生成网络GAN、强化学习。其中CNN常用于图像、视频、音频类数据分析,RNN则常见于文本类数据处理。GAN常用于图像合成、图像数据超像素去噪、语音合成和视频合成等领域。强化学习常见于电子竞技、库存管理、动态定价、动态治疗、机器人和工业自动化等领域。使用机器学习模型进行图像、视频、语音等类型数据处理,如下图所示,首先需要在该领域具备一定的数据量,有监督、半监督机器学习还需要将数据提前标注。完成数据准备工作后训练模型,并对模型参数不断调优至可以上线部署。训练好的模型部署上线后即成为一个个推理引擎,支持自然语言处理、图像识别、语音分析、海量结构化数据分析预测等。数据准备 模型选择数据清洗特征筛选训练验证数据集算法选择损失函数选择参数调优正则化部署上线推理服务测试调优推理服务平台层AI平台与生态自然语言处理大数据 算法 大计算语音 图像 AR/VR视频知识图谱 用户理解认知层感知层基础层图3 机器学习应用开发过程图4 人工智能开放平台技术能力日渐丰富来源: IDC, 2018 来源: 百度, 201810构成AI系统的技术能力由机器学习支撑的人工智能核心技术能力可分成2大类:(1) 感知技术: 智能语音智能语音是人以自然语音或机器合成语音同计算机进行交互的综合性技术,结合了语言学、心理学、工程和计算机技术等领域的知识。语音交互不仅要对语音识别和语音合成进行研究,还要对人在语音通道下的交互机理、行为方式等进行研究。语音交互过程包括四部分:语音采集、语音识别、语义理解和语音合成。语音采集完成音频的录入、采样及编码;语音识别完成语音信息到机器可识别的文本信息的转化;语义理解根据语音识别转换后的文本字符或命令完成相应的操作;语音合成完成文本信息到声音信息的转换。作为人类沟通和获取信息最自然便捷的手段,语音交互比其他交互方式具备更多优势,能为人机交互带来根本性变革,是大数据和认知计算时代未来发展的制高点,具有广阔的发展前景和应用前景。计算机视觉计算机视觉是使用计算机模仿人类视觉系统的科学,让计算机拥有类似人类提取、处理、理解和分析图像以及图像序列的能力。自动驾驶、机器人、智能医疗等领域均需要通过计算机视觉技术从视觉信号中提取并处理信息。近来随着深度学习的发展,预处理、特征提取与算法处理渐渐融合,形成端到端的人工智能算法技术。根据解决的问题,计算机视觉可分为图像理解、三维视觉、动态视觉三大类。(a)图像理解图像理解是通过用计算机系统解释图像,实现类似人类视觉系统理解外部世界的一门科学。通常根据理解信息的抽象程度可分为三个层次:浅层理解,包括图像边缘、图像特征点、纹理元素等;中层理解,包括物体边界、区域与平面等;高层理解,根据需要抽取的高层语义信息,可大致分为识别、检测、分割、姿态估计、图像文字说明等。目前高层图像理解算法已逐渐广泛应用于人工智能系统,如刷脸支付、智慧安防、图像搜索等。(b)三维视觉三维视觉即研究如何通过视觉获取三维信息(三维重建)以及如何理解所获取的三维信息的科学。三维重建可以根据重建的信息来源,分为单目图像重建、多目图像重建和深度图像重建等。三维信息理解,即使用三维信息辅助图像理解或者直接理解三维信息。三维信息理解可分为,浅层:角点、边缘、法向量等;中层:平面、立方体等;高层:物体检测、识别、分割等。三维视觉技术可以广泛应用于机器人、无人驾驶、智慧工厂、虚拟/增强现实等方向。(c)动态视觉动态视觉即分析视频或图像序列,模拟人处理时序图像的科学。通常动态视觉问题可以定义为寻找图像元素,如像素、区域、物体在时序上的对应,以及提取其语义信息的问题。动态视觉研究被广泛应用在视频分析以及人机交互等方面。
展开阅读全文